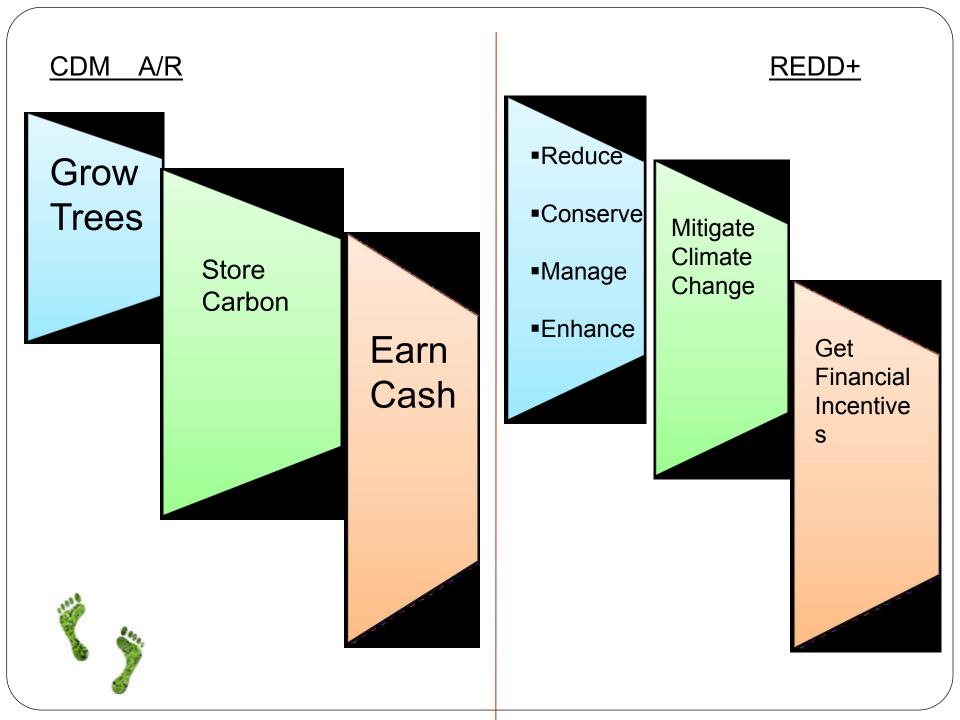


Himachal Pradesh Reforestation Project -- CDM Forestry Experience

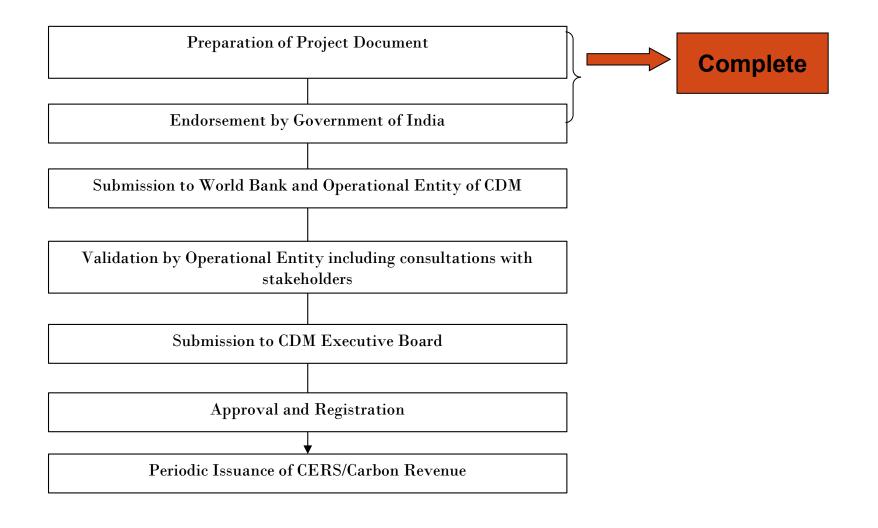
IGNFA, October 17 2016

A K Lal

Director, Environment, Science and Technology Member Secretary, HPSCSTE

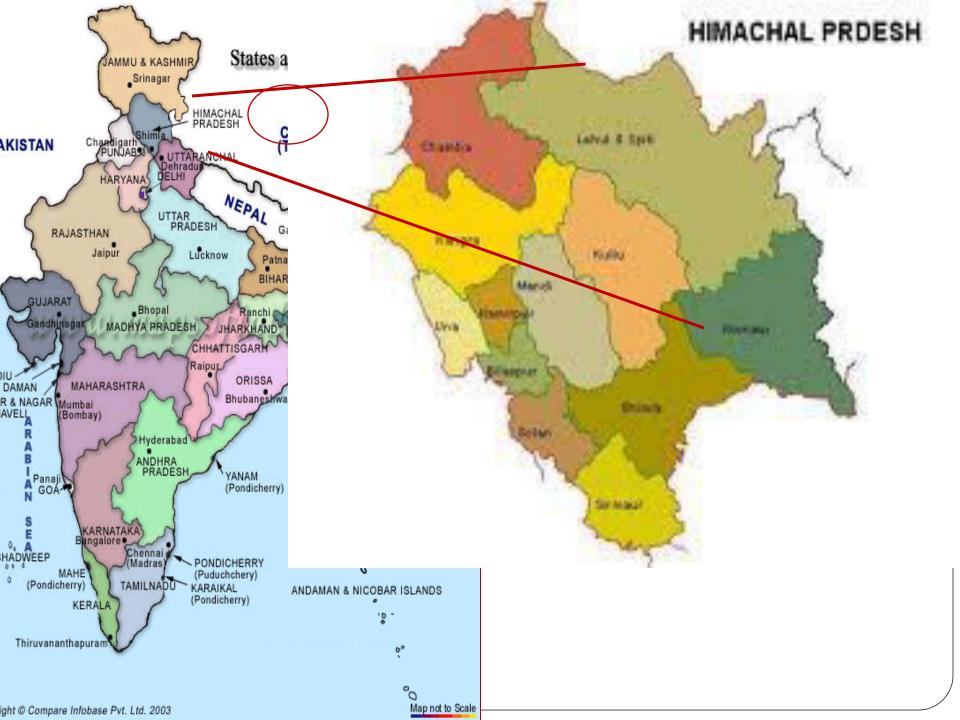

> aklal87@gmail.com 09418020350 (cell)

Simple a Concept ! (?)

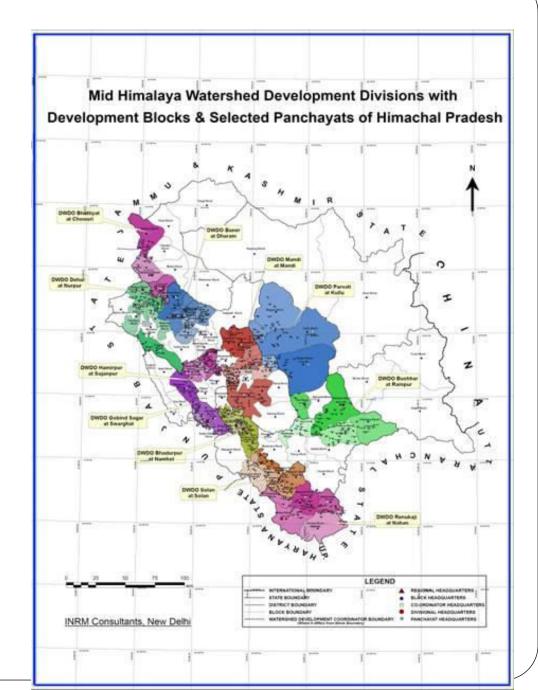

Grow Trees

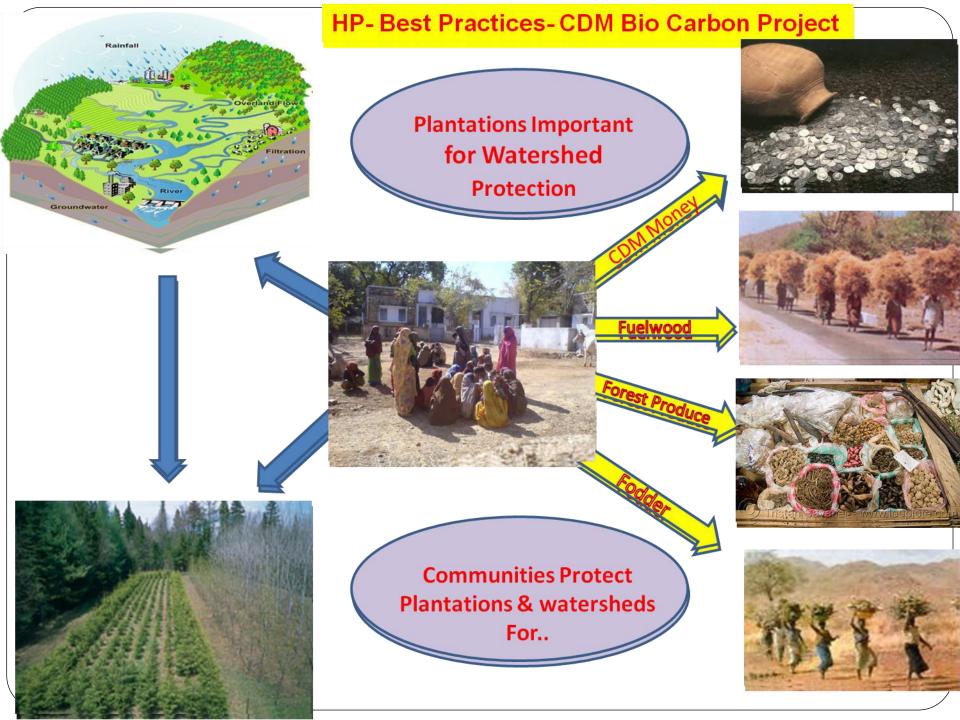
Store Carbon

Get Cash



Steps to Carbon Crediting




STEPS

- 1. Selection of region or project area
- 2. Selection of approved A&R methodology
- 3. Preparation of PDD, approval
- 4. Validation, Registration
- 5. ERPA
- 6. Implementation
- 7. Periodic Verification
- 8. Issuance of CERs by UNFCCC EB

Location Map

Highlights

- <u>First in India in Govt. Sector</u> involving govt. lands (forest / community) as well as private land Integrating Watershed development and livelihood
- First Pilot to test community benefit sharing mechanism through Carbon Markets involving govt. agencies and local institutions
- Second Large A/R CDM Project in India
- Has 4 times higher ER than the highest in A/R Sector (Maldova -179,242) HP –Expected ER 828,016

Salient Points

• Title- "India: Himachal Pradesh Reforestation Project-

Improving Livelihoods and Watersheds"

- Reforestation Project
- Expected Operational Life time : 60 Years
- Crediting period : 20 years (Renewable twice)
- Project proponent : Government of HP
- **Project Partners :** Govt. of H.P; World Bank;

Milestones

- Sept 2006 : PIN Approved
- May 2008 : PDD Approved
- 2008-2010 : Validation completed
- June 2011 : Registration (Effective date March 2011)
- May 2011 : ERPA signed
- July 2012 : Carbon Stock Sample
- Dec 2012 : Carbon Stock Estimate
- October 2013 : Verification
- August 2015 : 19 million received

Points Contd----

- Area : 4003 ha
- ✤ GPs : 177
- ✤ Parcels : 419
- ✤ Size of parcels : 1 to 150 ha

Land status: degraded forest /community land/private land

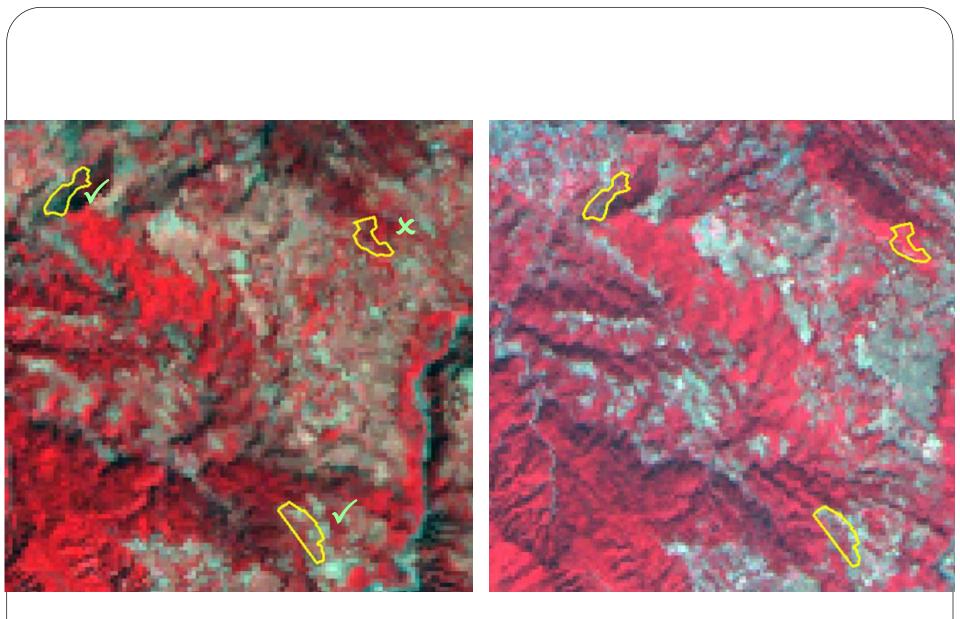
- Methodology : AR-ACM-001 (Version .03)
- Carbon Pool Selected: 3 (AGB+BGB+SOC)

*****Estimated ex-ante GHG removals by sinks ~ 828

Guiding Principles

- Identify Native and local Species.
- Involve Communities in reforestation efforts.
- Value addition to ongoing watershed interventions.
- Technical and financial support for reforestation by MHWDP (including capacity building).
- Carbon Revenue to go to communities as incentive to protect Forests/ Watersheds.

Project Boundary and Land Eligibility


✓ Remote Sensing Data - GPs with significant quantities of eligible lands shortlisted (FSI data/Survey maps).

✓Communities sensitized, PRA conducted to identify Spareable/agreed land parcels likely to qualify.

✓GPS Survey - Generate Boundaries/polygans, measure area.
 ✓FSI analysis for eligibility using Satellite Data- 1990 (TM) and current (LIS-III).

✓ Generated output on maps.

✓ Scrutiny by Validation Team – Onsite Visit / Satellite

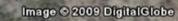
1989 LANDSAT TM 2004 IRS P6 LISS III

SPREAD OF PARCELS – DISTRICT.

1041016

Image © 2009 GeoEye Image © 2009 DigitalGlobe Image © 2009 TerraMetrics © 2009 Cnes/Spot Image

of the second

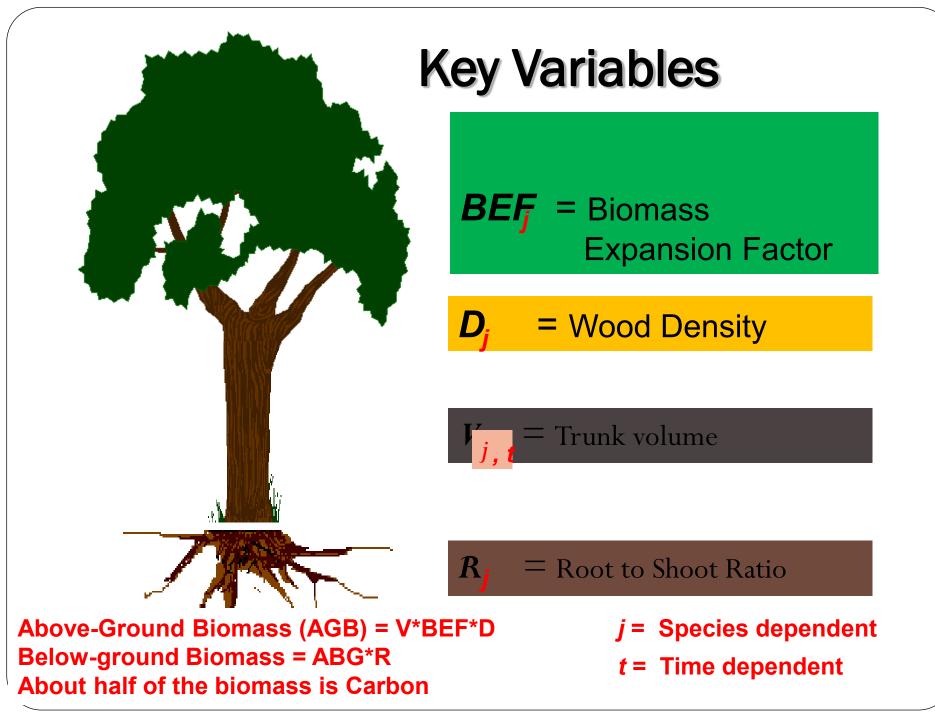


•

86 km

NM 060-P1

1


Streaming |||.|| 61%

+

Ê

Eye alt 6437 ft

Calculation of Carbon Stocks

(A) Cumulative Area under each Strata (stand)

(B) Av. MAI [t/ha] (Literature): Fast Growing-Slow Growing-

(C) Av. BEF (IPCC default) : 1.2

(D) Total AGB : $(A)^*(B)^*(C)$

(E) Total AG_Carbon : (D)*0.5

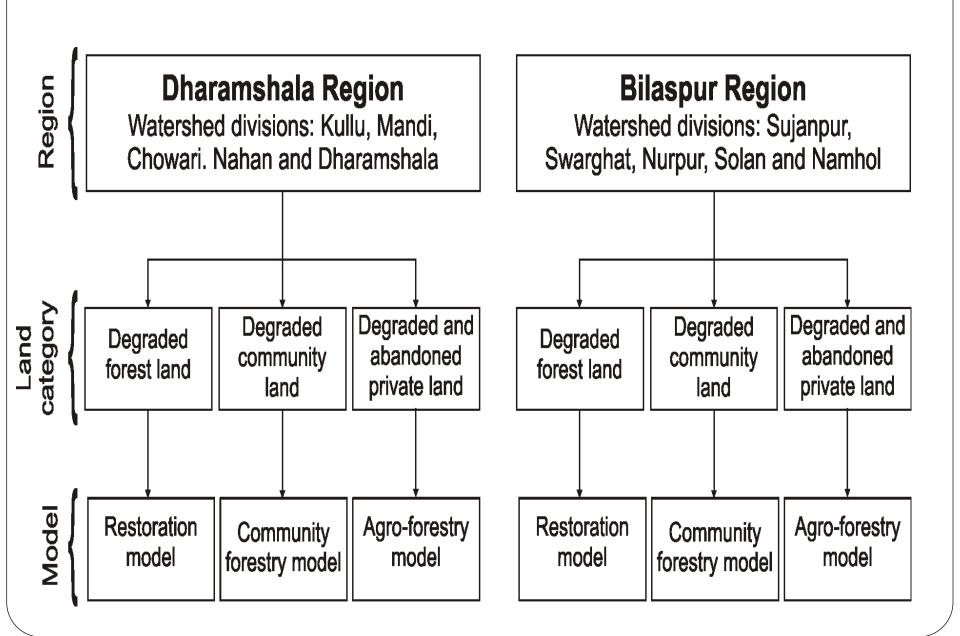
(F) Total BG_ Carbon: (E)*0.22

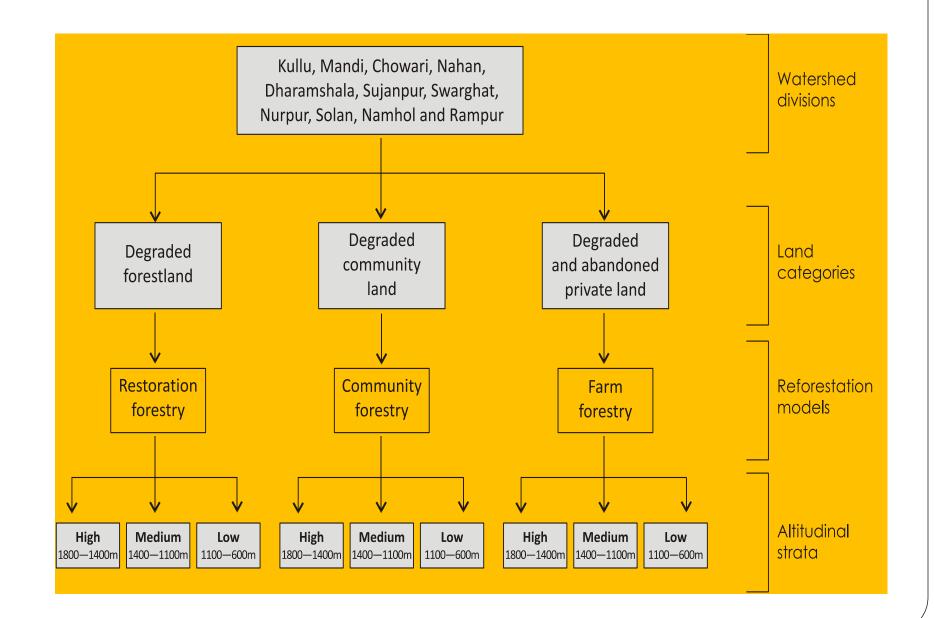
(G) Total Carbon: AG_C+ BG_C+SoC (0.5t/ha)

(H) Total CO2 Eq: (G)*3.66

Values Used for C stock Estimation

BEF : Literature Value of 17 Sp. Taken Av. Value 1.98 (1.49 – 2.90)


Conservative Value - 1.2 (IPCC GPG 2003) used


Root : Shoot Ratio- Literature Value of 13 Sp Av. Value 0.22 (0.17 – 0.39) used

IPCC Default 0.26- (Higher)

Carbon Fraction -0.5

SoC – 0.5 tC/Ha/Yr (Methodology)

Demonstration of Additionality (Combined Tool) <u>Alternative Scenarios</u> Forest & Community Lands can't be put to other use except Afforestation; Pvt. Lands Degraded (Unfit for Agriculture)

<u>Barrier</u>

Financial – F & C –Currently Low budget allocation ; P- No State budget available nor Financial access from Capital markets

Ecological- Degraded Lands require Higher & Continuous Caring, Tending & After-Care of Plantations

<u>Common Practice Analysis</u>–Incentive of Carbon Revenue for Continuous Caring & Tending of Plantations; Improved Silviculture Practices Estimation of Net GHG Removals (Ex ante) TARAM model of WB used

Compilation of Rep. Growth Rate of a Age Class for Stand Model – as input to TARAM has been a challenge

□ Species – 45

```
□ Strata – 9
```

```
□ Age Classes 4 (<5y; 5 -10y; 11-20y; >20y)
```

```
Growth Rates -2 (Fast ; Slow)
```

□ Large No of Literature Values of CAI/MAI

Lack of Complete/Sufficient Rep Regional Data

Wood Density					
	S.No.	Scientific Name	Standard Specific Gravity	Reference	
	1.	Acacia catechu	0.875	Suitability Indices of Indian Timbers for Industrial and Uses by A.C.Shekhar & A.S.Gulati.IFR Vol.2, No.1 (1972)	
	2.	Acer pictum	0.557	Physical and mechnical propeties of Acer caesium and A. Pictum from Jubbal Forset Division,H.P. published in van Vigyan,29 (1):40-50.	
	3.	Aegle marmelos	0.754	Suitability Indices of Indian Timbers for Industrial and Uses by A.C.Shekhar & A.S.Gulati.IFR Vol.2, No.1 (1972)	
	4.	Aesculus indica	0.428	A note on physical and mechanical properties of <i>Aesculus indica</i> (Horse chestnut) from River Range, Chakarata. Indian Forester,96(3) (1970).	
Ī	5.	Ailanthus altissima/A.excelsa	0.356	Specific gravity of Indian timbers.Published in J.Timb.Dev.Assoc.()31(3):12-42(1985)	
	6.	<i>Albizzia procera</i> (Safed siris)	0.579	Suitability Indices of Indian Timbers for Industrial and Uses by A.C.Shekhar & A.S.Gulati.IFR Vol.2, No.1 (1972)	
	7.	<i>Albizzia lebbek (A.odoratissima)</i> Kala siris	0.632	Suitability Indices of Indian Timbers for Industrial and Uses by A.C.Shekhar & A.S.Gulati.IFR Vol.2, No.1 (1972)	
	8.	Albizzia stipulata (A.chinensis)	0.676	Phy. & Mech. Properties of <i>Albezzia</i> <i>chinensis</i> from Dehradun.Published in T.D.A.,July-Oct.2002 ,Vol. 48, No. 3&4.	
	9.	Alnus nepalensis / A.nitida	0.319	Suitability Indices of Indian Timbers for Industrial and Uses by A.C.Shekhar &	

Baseline

Land Category	ABG Non-Tree Biomass Dry/t/ha/Yr	Tree Biomass t/ha (SE -0.5 – 1.15)	Soil Organic Carbon (tC/ha) (SE– 1.14 – 3.01)	
Forest	1.7	1.92	26.98	
Community	1.3	1.85	30.21	
Private	2.0	2.18	27.74	

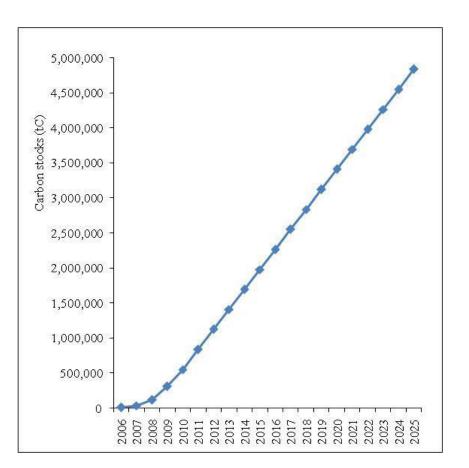
Degraded Lands have Negligible or Zero other Carbon Pools (Litter, Dead Wood, Non Tree Biomass)

MAI = 0.004 t/Ha/Yr

Av. Growing Stock = 3.27 t/Ha (Insignificant, Not Included)

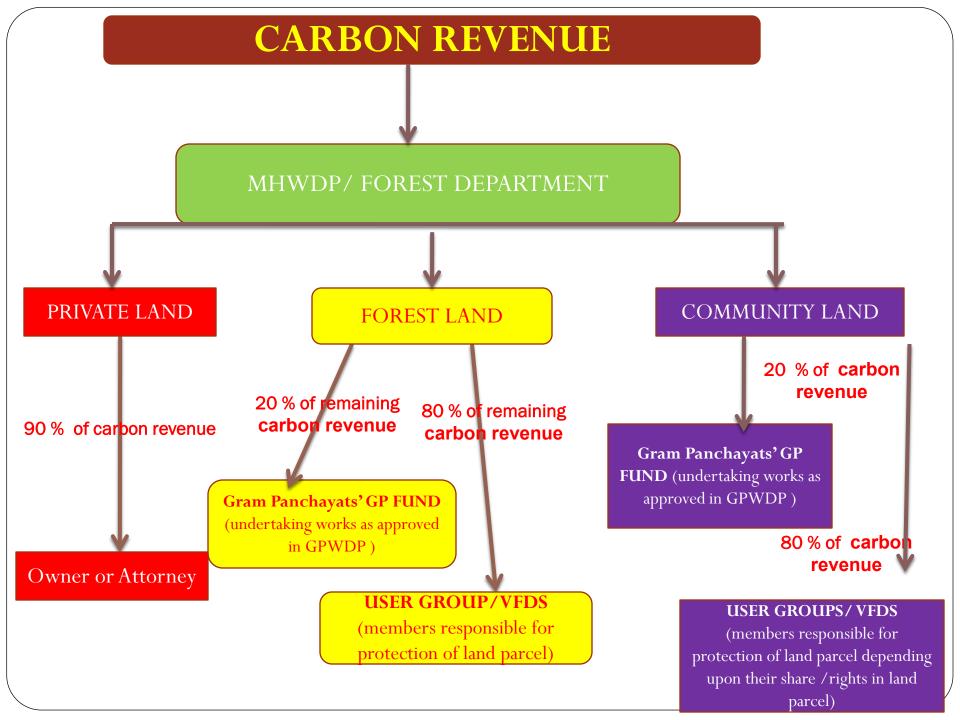
Year wise Planted Area

Year of Planting	Area (Ha)
2006 - 07	135.3558
2007 - 08	207.4375
2008 - 09	556.4892
2009-10	704.0873
2010-11	1332.3253
2011-12	264.99
2012-13	30.00
Total	3230.6851


S. No.	Scientific Name	S. No.	Scientific Name	S. No.	Scientific Name
1	Acacia catechu	16	Gravellia robusta	31	Terminalia arjuna
2	Aegle marmelos	17	Grewia optiva/G.	32	Terminalia chebula
			oppositifolia		
3	Aesculus indica	18	Juglans regia	33	Artocarpus lakoocha
4	Ailanthus altissima/A.	19	Mangifera indica	34	Hicoria carya
	excelsa				
5	Albizzia procera	20	Melia azadirchta	35	Dendrocalamus spps
6	Albizzia lebbek	21	Morus alba	36	Tectona grandis
7	Albizzia stipulata	22	Pinus roxburghii	37	Terminalia tomentosa
8	Alnus nepalensis/A.	23	Pongamia pinnata	38	Prunus armeniaca
	nitida				
9	Azadirachta indica	24	Populus ciliata/P.	39	Ulmus laevigata/u.
			Alba/P. deltoids		wallichiana.
10	Bauhinia variegata	25	Quercus	40	Prunus cornuta/P.
			leucotrichophora		Cerassoides/P.padus
11	Bombax ceiba	26	Robinia	41	Olea glandulifera
			pseudoacacia		
12	Toona ciliata	27	Salix alba	42	Pinus wallichiana
13	Cedrus deodara	28	Sapindus mukorossii	43	Cassia seamia
14	Dalbergia sissoo	29	Syzygium cuminii	44	Acacia nilotica
15	Emblica officinalis	30	Terminalia bellerica	45	Butea monosperma

Plantation Survival (%) July 2014

Sr. No.	Division	Area Planted	Area Sampled	Weighted Survival %
1 Mandi		344.11	29.3	65.54
2Sujanpur3Dharmshala		107.14	84.1	87.37
		61.60	19.94	67.73
4	Nurpur	67.85	22.26	76.45
5	Chowari	404.57	38.87	73.88
6Solan7Nahan8Swarghat9Namhol		44.89	18.49	85.08
		72.99	22.14	24.06
		750.16	64	87.61
		85.46	24.39	55.41
10	Kullu	554.76	67.15	69.26
11	Rampur	707.93	40.74	60.73
	Total	3201.46	/131 38	72 75


Estimate of GHG removals by sinks according to project activities for the three plantation models in tCO_2 -e

Year	Restorati on model	Communi ty forestry model	Agro- forestry model	Total CO2-e
2006	11549	0	0	11549
2007	25664	0	0	25664
2008	75707	5897	0	81605
2009	152955	18281	20701	191937
2010	182083	18281	41403	241767
2011	213244	21685	50758	285687
2012	213244	21685	50758	285687
2013	213244	21685	50758	285687
2014	213244	21685	50758	285687
2015	213244	21685	50758	285687
2016	213244	21685	50758	285687
2017	213244	21685	50758	285687
2018	213244	21685	50758	285687
2019	213244	21685	50758	285687
2020	213244	21685	50758	285687
2021	213244	21685	50758	285687
2022	213244	21685	50758	285687
2023	213244	21685	50758	285687
2024	213244	21685	50758	285687
2025	213244	21685	50758	285687
Total	3646620	367730	823469	4837819
Per ha	514	474	387	484

Projected Revenue from Sale of CERs

		CERs (tCO2-e)		CERs/year (tCO ₂ -e)	CER revenue (Rs./year) at US\$ 4.75/tCO ₂	
Total for the w project area	8,28,016	Ó	41,979	19872	3840	
Average per hectare		207		10.34	24	81.6
	Total Proje (in h		N	No. of plantation	patches	
400		3		419		

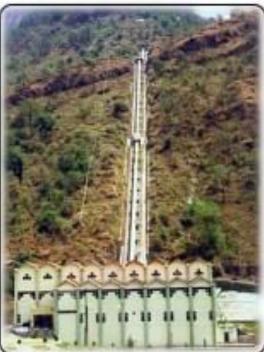
MONITORING

Process

Reporting

Compilation, Analysis,
 Calculation

➢ Way Forward


Monitoring Process

- Monitoring By PP as per Monitoring Plan
- Periodic Verification of Carbon Stocks by Third Party Verifiers (3-5Yr)
- Parameters
- Formats
- Team & Mechanism
- Quality Checks
- Recording
- Results
- Archiving

Reporting for Monitoring

- Land Stratification and Category Details
- Parcel Details: Area , Latitude, Longitude, Altitude
 - Species Details: Composition, No.(stratum and category wise)
- Growth Data: DBH, Height ,
 - Survival
- Undergrowth Data

Trade Off Reducing Poverty Reducing Emissions

Horticulture: apples

hydroelectricity

 \rightarrow

tourism

36

Land

- Availability
- Eligibility
- Suitability
- Discreet Parcels
- Approachability
- Strata
- Baseline
- Additionality
- Leakage

Grow Trees

Feasibility Assessment

- Justification: Multiple Windows, Multi Layer Scrutinies
- Conditionality's; Standards; Methodologies
- Where: Land; Title, Boundary, its eligibility; requirements
- What: Species with all Technical/Silvicultural details
- General Requirements: Additionality, Leakage, Alternative Scenario Analysis, Baseline data
- Funding : Viability
- Documentation---PIN, PDD etc

Beyond Plains

- Availability
- Suitability
- Discreet Parcels
- Vicinity/Approachability
- Eligibility
- Strata
- Baseline
- Additionality
- Leakage

FOREST

✓ Eligibility✓ Inventory

- ✓Growth
- ✓Composition
- ✓Survival
- ✓Permanence
- ✓ Existence for periodic
 Returns
- ✓People Watch
- ✓People Participation

Implementation Challenges

Contd.. STORE Carbon: Carbon Inventorying Quality Control and Quality Assurance > Monitoring Samples ; Reporting >All data to the minutest levels ➢ Records Verifications of Data, Field Numerous Steps; many Windows

Implementation	Challenges

Get Cash

Contd....

Market/Buyer(s)
 Money Transfer Mechanism
 Regulatory Levels
 Transaction Costs
 Payment mechanism

Protection

- Institutional Arrangements
- Forest and Biomass Stock
- Climate / Calamity
- Maintenance Funding
- People's involvement

Pressure

Suggestions Worth Sharing

Develop Project on Total Economic Beneficial plank: Highlight socio environmental outcomes

Develop BC Project as a Sub Project of existing/ proposed Main Project

➢ Go for ERPA as soon as possible after Registration

Keep Parameters Flexible to accommodate deviations

> Try to project the Project as a win –win work in any case

If not, better ignore it Or it will be pain not Gain

Uncooked is better than half cooked

Gahin Lagore (CDM Area) Gahin Lagore (Nurpur Unit)

THANK